본문 바로가기

전체 글64

수용성 비타민 니아신과 판토텐산 - 니아신- - 니아신의 함량을 표시할 때 사용하는 단위는 니아신 당량(mgNE)으로서 60mg의 트립토판이 1mg의 니아신으로 전환되는 것을 의미한다. - 니아신은 니코틴산과 니코틴아마이드로 존재하며 카복실기(-COOH) 또는 아마이드기(-NH2)를 갖는다. - 트립토판이 니아신으로 전환되는 과정에 비타민 B6, 리보플래빈이 조효소로 작용한다. 1. 체내 기능 - 세포 내 산화-환원반응의 조효소 ① 니아신의 조효소 형태는 니코틴아마이드 디뉴클레오티드(NAD)와 니코틴아마이드 디뉴클레오티드 포스페이트(NADP)로서 체내의 산화-환원 반응에 참여한다. ② 에너지 영양소들로부터 ATP를 생성하는 대사 과정에 필수적인 조효소로서 작용한다. ③ NAD를 조효소로 사용하는 탈수소효소 : 알코올 탈수소효소 1) N.. 2023. 4. 11.
수용성 비티민 티아민과 리보프래빈 - 티아민 - - 티아민은 질소를 함유하는 6 원자 고리구조인 피리미딘과 황을 함유하는 5 원자 고리구조인 티아졸이 메틸렌기(-CH2-)에 의해 연결된 구조를 가진 화합물이다. - 티아민은 장시간 가열조리 하면 분자 내에 있는 양쪽 고리구조와 메틸렌기 사이의 화학결합이 쉽게 끊어져 비타민의 기능을 잃게 된다. 1. 체내 기능 - 티아민의 조효소 형태는 티아민에 두 개의 인산기가 결합하여 형성된 티아민 피로인산(TPP)이다. - 티아민이 결핍되면 탄수화물이 에너지 대사가 원활하지 않아 ATP 합성이 저조해지며, 케톤기 전이 반응의 저하로 인해 NADPH와 오탄당의 합성이 저하되므로 지방산과 핵산 합성 이상을 초래하고 신경전달 및 조절에 장애가 나타난다. - TPP는 다음과 같은 반응에서 조효소로 작용한다... 2023. 4. 10.
지용성 비타민 K -비타민 K- - 혈액 응고에 필수적인 비타민이다. - 식물에서 추출한 필로 퀴논과 생선 기름과 육류에서 발견한 메나퀴논, 그 외 수용성을 띤 여러 가지 메나디올 화합물이 존재한다. 1. 흡수와 대사 - 식사에서 섭취한 비타민 K는 함께 먹은 지방의 양, 담즙의 작용 등에 따라 흡수율이 달라진다. - 비타민 K는 소장에서 흡수되어 카일로미크론에 포함되어 간으로 간다. - 비타민 K와 그 산화 대사물은 주로 담즙으로 배설되나 일부는 소변으로 배설된다. - 간은 비타민 K의 주요 저장소이지만 전환속도가 빨라 체내 풀의 크기는 매우 작다. 2. 체내 기능 - 비타민 K는 간에서 혈액응고 인자의 합성에 관여한다. ① 몇몇 혈액응고 인자들은 간에서 불활성형 단백질의 형태로 합성되며, 활성화되기 위해서는 비타민K가.. 2023. 4. 10.
지용성 비타민 D와 E - 비타민 D - - 비타민 D는 체내에서 합성될 수 있으며, 작용기전이 스테로이드 호르몬과 유사해 프로호르몬으로 분류되기도 한다. - 비타민 D3는 동물성 급원으로부터, 비타민 D2는 식물성 급원으로부터 각각 얻을 수 있다. - 비타민 D3는 피부에서 7-다이하이드로콜레스테롤로부터 자외선에 의해 촉매 되어 합성된다. 1. 합성 - 피부에서 7-다이하이드로콜레스테롤이 햇빛 중의 자외선을 받아 비타민 D를 형성한다. - 피부에서 합성된 비타민 D는 혈액을 통해 간으로 이동해 식사로부터 섭취한 비타민 D와 합쳐진 후, 간과 신장에서 산화되어 1,25-다이하이드록시 비타민 D(1,25-(OH)2-비타민 D)가 만들어진다. - 햇빛을 지나치게 많이 받으면 비타민 D와 함께 누 미 스테롤과 같은 관련 물질이 합성.. 2023. 4. 6.
지용성 비타민 A -비타민 A- 1. 개요 - 레틴올과 그 에스터 형태인 레티닐에스터들, 그리고 비타민 A 활성을 갖는 몇몇 카로티노이드들을 총칭한다. ① 레틴올, 레티닐에스터 : 체내에서 전환과정 없이 활성을 띠며 동물성 식품에 주로 존재한다. ② 천연 카로티노이드 중 가장 활성이 높고 양적으로 우세한 것은 β-카로틴이다. ③ 카로티노이드 : 주로 식물성 식품에 존재하고, 비타민 A 전구체라 불리는 몇 가지만이 체내에서 레틴알 또는 레 티도 익산으로 전환되어 비타민 A로서 활성을 가진다. - 비타민 A 활성을 지닌 물질들은 모두 체내에서 산화, 또는 부분적 분해 단계 등을 거쳐 레틴올 또는 레틴알, 레 티도 익산 등이 전환되어 그 활성을 나타낸다. 2. 체내 기능 - 시각 관련 기능 ① 망막의 간상세포와 원추세포가 각각.. 2023. 4. 3.
단백질의 분류와 구조 및 기능 -단백질의 분류와 구조- 1. 단백질의 분류 - 단순단백질 : 아미노산 외에 다른 화학성분을 함유하지 않는 단백질을 말한다. - 복합단백질 ① 아미노산 외에 몇 가지 화학성분을 함유하는 단백질을 말한다. ② 보결기 : 비 아미노산 부분으로, 단백질의 생물학적 기능에 중요한 역할을 하며 보결기의 화학적 성질에 따라 복합단백질을 분류한다. 분류 보결기 예 지단백질 지질 카일로미크론, VLDL, LDL, HDL 당단백질 탄수화물 뮤신, 점액 단백질, 혈중 면역글로불린 G 인단백질 인산기 카제인(우유) 헴단백질 헴(Heme) 혈중 헤모글로빈 플래빈 단백질 플래빈 뉴클레오타이드 숙신산 탈수소효소 금속단백질 철, 아연, 칼슘, 구리 등 철 저장단백질, 알코올 탈수소효소, 칼모둘린, 플래시소토시아닌 - 단백질은 생체.. 2023. 4. 3.
지질의 운반과 대사 -지질의 운반과 대사- 1. 지단백질의 종류 및 대사 - 지단백질 : 지질을 혈액 내에서 운반하는 특별한 수송체계이다. - 지단백질은 중성지방이나 콜레스테롤 같은 비극성 물질은 안쪽에 있고, 인지질이나 단백질과 같은 극성물질이 바깥 부분을 둘러싸고 있어 혈액 내에서 자유롭게 이동될 수 있다. - 종류 : 카일로미크론, VLDL, LDL, HDL 지단백질 종류 주요 생성 장소 특징 카일로미크론 소장 식이의 중성지질을 운반하는 지단백으로 중성지질이 풍부해 밀도가 가장 낮다. 공복 상태에서는 존재하지 않는다. 생성 후 분해되는 속도가 빠르다. VLDL 간 간에서 합성되는 중성지질을 조직으로 운반하는 지단백으로 밀도가 2번째로 낮다. LDL 혈액 내에서 전환 콜레스테롤 에스테르(CE)가 가장 많은 지단백으로 L.. 2023. 4. 2.
지질의 분류와 구조 및 기능 -지질의 분류 및 구조- 1. 지방산 - 구조 ① 긴 탄소 사슬로 서로 연결되어 있고, 많은 수소가 결합 되어있다. ② 카복실기(-COOH)로부터 시작하고 α-탄소로부터 소수성인 긴 탄화수소로 구성되며 오메가(ω) 부분인 메틸기(-CH3)로 끝난다. - 분류 ① 탄소 사슬의 길이에 따라 구분 : 짧은 사슬 지방산(탄소수 4~6개), 중간 사슬 지방산(8~12개), 긴 사슬 지방산(14~20개), 매우 긴 사슬 지방산(22개 이상) ② 포화도에 따라 구분 : 포화지방산(이중결합 0개), 단일불포화지방산(1개), 다가불포화지방산(2개↑) ③ 형태에 따라 구분 : 불포화지방산은 대부분 시스형으로 존재하며, 일부는 트랜스형으로 존재한다. 지방산 급원 포화지방산 라우르산(C12:0) 팜핵유, 코코넛유 등 팔미트산.. 2023. 4. 2.
반응형